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Abstract

Structures which have a constant cross-section normal to a longitudinal axis can be considered as waveguides in which

vibration can propagate in the form of various waves in the longitudinal direction. The dynamic behaviour of such systems

can be found by using a Fourier transform approach in terms of wavenumbers in the longitudinal direction. Analytical

solutions are available for simple, infinitely long waveguides, whereas for more complex waveguides numerical approaches

have been developed using finite element techniques to describe the cross-section. In the present paper an analytical

Fourier transform approach is used to find the dynamic behaviour of a system consisting of two parallel beams coupled by

a plate, when a point force is applied to one of the beams. Multiple waves occur in the longitudinal direction, the number

of waves depending on the number of modes of the equivalent cross-section. However, the motion of the driven beam is

shown to be dominated by the contribution from only one or two waves at each frequency, these having wavenumbers

closest to that of the uncoupled beam. The motion of the plate is also shown to be dominated by these wavenumbers for

excitation on the beam. Experimental results are obtained on beam–plate–beam systems with identical and non-identical

beams, which show good agreement with the predictions. In particular, these confirm that the plate response is dominated

by waves with wavenumbers in the beam direction that follow those of the excited beam.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Structures which have a constant geometry along one coordinate direction (here denoted as the x-direction)
may be considered as waveguides. Examples include beams, pipes, bridges, extruded panels and many
beam–stiffened plate structures such as ship and aircraft structures. As such structures become long in the
x-direction (or as frequency increases), the use of conventional techniques to find their vibration behaviour,
for example finite element analysis, becomes impractical. Instead, a wave approach can be used, making direct
use of the two-dimensional (2D) geometry. Wave solutions can be sought in the x-direction whilst the cross-
section may be modelled either analytically or using special finite elements.

Waveguides are well known in acoustics, where a duct of constant cross-section permits a series of waves to
propagate without attenuation. At low frequency only the lowest order wave (a plane wave) can propagate; as
the frequency is increased, successive higher modes start to propagate [1]. Each propagating wave corresponds
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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to a mode of the cross-section; these waves ‘cut on’ at a frequency corresponding to the resonance frequency of
the 2D system. Similar phenomena occur for electromagnetic waveguides (e.g. Ref. [2]).

An infinite beam forms a simple structural waveguide sustaining bending, torsional and extensional waves.
In Ref. [3] the free wave propagation is determined for two parallel beams (or plates) in bending coupled by an
elastic layer. In this case a single propagating wave exists at low frequency. Above a transition frequency,
identified as the resonance of the mass of the two beams on the stiffness of the interlayer, a second propagating
wave also exists. The wavenumbers of these two waves tend to those of the uncoupled beams at high
frequency.

Another simple structural waveguide considered in Ref. [3] consists of an infinitely long plate strip with
parallel sliding boundaries. The vibration of this system is solved as a sum of modal contributions across the
width and in terms of the longitudinal wavenumber. At low frequency only a single wave type with a constant
deflection across the plate width can propagate and the system behaves like a beam. As frequency increases,
waves of progressively higher order occur. These commence at frequencies corresponding to resonances of the
cross-section, in this case given by kpL ¼ np, where kp is the plate-free wavenumber, L is the width and n is an
integer. A Fourier transform with respect to the wavenumber in the longitudinal direction allows the point
mobility to be obtained.

Fourier transform approaches are widely used in analysing the vibration of an infinite layered ground, both
for seismological applications [4] and for studying the vibration induced by trains [5]. These mostly use a 2D
Fourier transform in terms of the wavenumbers in two perpendicular directions parallel to the ground surface.
In the case of a railway track on a ground [5] the waves in the track are modified by the presence of the
ground. Ji [6] used a similar Fourier transform approach to model an infinite beam coupled to an infinite plate
and subsequently developed a hybrid Fourier transform approach for the case of a finite beam attached to an
infinite plate [6,7].

In recent years, the spectral or wavenumber finite element method has been developed for application to
structural waveguides [8–11]. In this, the 2D cross-section is represented by special finite elements whilst in the
third dimension wave solutions are assumed. Solutions may be obtained for the free wavenumbers by solving
the dispersion equation and the forced response may be found by using a Fourier integral over a range of real-
valued wavenumbers. Applications have included railway tracks [12,13], pipes [14] and car tyres [15].

An alternative numerical approach [16,17] is to represent a small segment of the structure in the x-direction
using conventional finite elements and to invoke periodic structure theory [18] to represent wave propagation
in an infinite structure. This has the advantage of allowing the use of conventional finite elements, whereas
the spectral finite element method described above requires higher order stiffness matrices in addition to
the conventional mass and stiffness matrices. On the other hand, an approximation is introduced in the
x-direction (dependent on the finite element shape function) whereas the other methods discussed above work
with exact wave solutions.

In this paper, the Fourier transform approach is used with analytical models, firstly of two beams connected
by a resilient layer and then of a finite width plate strip with two parallel beams attached along the long edges.
This latter problem is treated initially by assuming that the beams are infinitely stiff to torsion and thus the
plate edges at the junction are effectively sliding. The effect of this simplification is also investigated. The
present work is limited to relatively low frequencies where the beams and plate behave simply in bending
(and torsion) without deformation of their cross-sections. Such structures are simple enough to allow
analytical modelling of the cross-section, allowing insight to be gained into their behaviour. Wavenumber or
spectral finite elements could also have been used for such a problem; the present analytical solutions could be
considered as a benchmark for such models.

It is shown that there are, in general, many wave solutions in the x-direction, but that the solution closest to
the wavenumber of the driven beam tends to dominate the response of the driven beam and also of the plate.
Example calculations are given for cases where the two beams are identical as well as where they have different
free wavenumbers.

Experimental results on finite length waveguides are presented for comparison with the analytical results.
A wavenumber correlation technique [19,20] is used to extract the dominant wavenumbers in the plate and
beams. This analysis is used to verify experimentally that, for excitation on one of the beams, the
wavenumbers in the plate in the x-direction follow those of the driven beam.
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2. Two beams connected by resilient layer

2.1. Fourier transform approach

As a preliminary to considering the beam–plate system, a simple waveguide structure is considered,
consisting of two infinite Euler–Bernoulli beams connected by a resilient layer of stiffness s per unit length, as
shown in Fig. 1. Solutions for the coupled waves in this case are given in Ref. [3], but the motion of this system
will be found here using the Fourier transform approach, as this will assist in interpretation of the more
complex cases considered later. Harmonic motion at frequency o is assumed. Spatial Fourier transform
pairs are defined by the relationship between the longitudinal coordinate x and real wavenumber kx in the
x-direction,

~W iðkxÞ ¼

Z 1
�1

~wiðxÞ e
�ikxx dx (1)

~wiðxÞ ¼
1

2p

Z 1
�1

~W iðkxÞ e
ikxx dkx (2)

where ~wi is the complex displacement amplitude, ~W i is the Fourier transformed displacement and subscript
i ¼ 1, 2 represent the two beams ð� indicates complex quantities).

The resilient layer applies a force per unit length ~f 1ðxÞ downwards on beam 1 and an identical but opposite
force, for convenience denoted ~f 2ðxÞ ¼ �

~f 1ðxÞ, on beam 2, as shown in Fig. 1. An external point force
~F0dðx� 0Þ acts at x ¼ 0. The equation of motion of beam 1, including damping is

~Db1
d4 ~wb1

dx4
�m0b1o

2 ~wb1 ¼ ~F0dðx� 0Þ � ~f 1ðxÞ (3)

where ~wb1 is the complex displacement amplitude, ~Db1 is the complex bending stiffness (i.e. including damping
via a factor (1+iZ), where Z is the loss factor) and m0b1 is the mass per unit length. The corresponding spatial
Fourier transform becomes

~Db1k4
x
~W b1ðkxÞ �m0b1o

2 ~W b1ðkxÞ ¼ ~F 0 � ~F1ðkxÞ (4)

and similarly for beam 2, on which no external force acts,

~Db2k
4
x
~W b2ðkxÞ �m0b2o

2 ~W b2ðkxÞ ¼ � ~F 2ðkxÞ (5)

where subscripts b1 and b2 stand for beams 1 and 2, while ~F1ðkxÞ and ~F 2ðkxÞ are the Fourier transforms of
~f 1ðxÞ and

~f 2ðxÞ, respectively. The forces are related to the beam displacements according to the stiffness matrix
of the resilient layer

~F1ðkxÞ

~F2ðkxÞ

( )
¼

s �s

�s s

� � ~W b1ðkxÞ

~W b2ðkxÞ

( )
(6)
~
f1 (x)

~
f2 (x)

~
F0� (x-�)0

~w1 (x)

~w2 (x)

Fig. 1. Two beams connected by a resilient layer.
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This can be combined with Eqs. (4) and (5) to eliminate the internal forces ~F1ðkxÞ and ~F 2ðkxÞ giving

ðCþ SÞ
~W b1ðkxÞ

~W b2ðkxÞ

( )
¼

~F0

0

( )
(7)

where S denotes the stiffness matrix in Eq. (6) and C is a diagonal matrix containing the terms

g11 ¼ ~Db1k
4
x �m0b1o

2; g22 ¼ ~Db2k4
x �m0b2o

2 (8)

By evaluating the inverse of (C+S) explicitly, the response of the driven beam can be found as

~W b1ðkxÞ ¼
~F0

~Db1

k4
x �

~k
4

b2 þ s= ~Db2

k4
x �

~k
4

b1 þ s= ~Db1

� �
k4

x �
~k
4

b2 þ s= ~Db2

� �
� s2=ð ~Db1

~Db2Þ
(9)

where ~kbi ¼ o2m0bi=
~Dbi

� �1=4
are the wavenumbers in the uncoupled beams. Similarly, the response of the

non-driven beam becomes

~W b2ðkxÞ ¼
~F0

~Db1

s= ~Db2

k4
x �

~k
4

b1 þ s= ~Db1

� �
k4

x �
~k
4

b2 þ s= ~Db2

� �
� s2=ð ~Db1

~Db2Þ
(10)

For an undamped system, the free wavenumbers of the coupled system correspond to the zeros of the
denominator of Eqs. (9) and (10), i.e. the solutions of

ðk4
x � k4

b1 þ s=Db1Þðk
4
x � k4

b2 þ s=Db2Þ � s2=ðDb1Db2Þ ¼ 0 (11)

where kbi and Dbi are real in the absence of damping. At high frequencies s has negligible effect and the
solutions tend towards the free wavenumbers of the two beams, kbi. At low frequencies only one propagating
wave exists; the cut-on frequency of the second wave can be found by setting kx ¼ 0 in Eq. (11). Substituting
for kbi this yields

o2
0 ¼

s

m0b1
þ

s

m0b2
(12)

from which it is clear that the cut-on frequency o0 corresponds to the resonance of the two beam masses on
the resilient layer.

2.2. Results

Results are presented for three configurations. They are chosen to correspond to the beam configurations
included in the measurements in Section 4. In one configuration the two beams are identical, while in the other
two their widths are identical but their heights (and therefore masses) are in the ratio 1:2.364, corresponding to
a wavenumber ratio kb2/kb1 of 0.650 or 1.537 depending which beam is excited.

The free wavenumbers (for the undamped case), found from Eq. (11), are shown in Fig. 2. The frequency is
normalised by o0 (see Eq. (12)) and the wavenumber is normalised by k0 ¼ kb1(o0).

At low frequency a single wavenumber is present corresponding to the composite structure vibrating
as a single beam. At o ¼ o0 the second wave cuts on and tends towards the free wavenumber of
the stiffer beam. Meanwhile, the wave already present tends towards the free wavenumber of the less stiff
beam. For the case of identical beams the higher wavenumber solution is identically equal to kbi for all
frequencies.

The response amplitude in the wavenumber domain, j ~W b1ðkxÞj, is plotted against frequency and
wavenumber kx in Fig. 3(a) for the two identical beams. Fig. 3(b) shows the corresponding response of the
non-driven beam, j ~W b2ðkxÞj. Equivalent results are given for the two dissimilar beam cases in Fig. 3(c)–(f).
Areas of dark shading correspond to large magnitudes. These are normalised by the maximum response at
each frequency. The loss factor was set to 0.005 in these examples for clarity of the results.

Comparing these results with Fig. 2 it can be seen that, above o0, the region of maximum response on the
driven beam follows the wave closest to the free wavenumber of that beam in each case. However, the response
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Fig. 2. Free wave solutions for undamped case of two beams connected by resilient layer. Frequency normalised by cut-on frequency o0,

wavenumber by kb1 at o0: (a) identical beams, (b) dissimilar beams (b1 is the stiffer beam). (—) Coupled beam wavenumbers and (���)

uncoupled beam wavenumbers.
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of the non-driven beam is dominated by the wavenumber of the stiffer beam (for dissimilar beams), whichever
beam is excited. Note that Figs. 3(d) and (f) are identical, as Eq. (10) is unchanged if the subscripts b1 and b2
are exchanged.

Fig. 4 shows the point mobility for each case, found from the inverse Fourier transform of Eq. (9) at x ¼ 0,
in this case with the damping loss factor set to 0.05. In each case the mobility has been normalised by the
mobility of beam 1, Yb1, at o0. At low frequency the results correspond to a composite beam. A peak is found
at the cut-on frequency of the second wave, above which the mobility tends to Yb1.

Finally, the degree of isolation afforded by the resilient layer is assessed by evaluating the ratio of the
summed squared vibration on each beam. Using Parseval’s identity this can be found from the Fourier
transform:

Ei ¼

Z 1
�1

~wiðxÞ
�� ��2 dx ¼

1

2p

Z 1
�1

~W iðkxÞ
�� ��2 dkx (13)

Fig. 5 shows the ratio E2/E1 for the three configurations considered, again with the damping loss factor set
to 0.05. For identical beams the two beams have almost equal average vibration for frequencies up to 3o0,
whereas for dissimilar beams the degree of isolation is much greater at high frequency due to the mismatch in
their free wavenumbers. When the stiffer beam is driven the ratio resembles closely that of a single degree-of-
freedom isolator, but when the less stiff beam is driven the isolation above o0 is much greater, in this case by
about a factor of 10. Even below o0 the ratio E2/E1 is less than unity as the response of the driven beam is
higher in this case.
3. Beam–plate–beam system

3.1. Fourier transform solution

Consider now the waveguide structure consisting of two infinite beams connected by an infinitely long, finite
width plate, as shown in Fig. 6, which is the main subject of this paper. As above, harmonic motion at
frequency o is assumed. The beams are represented as Euler–Bernoulli beams and the plate is assumed to be
thin and isotropic. These models are valid for frequencies where kho1, where h is the height of the beam or
plate. In-plane plate motion is also neglected. At this stage, for simplicity, the beams are assumed to be
infinitely stiff to torsion along y ¼ 0 and Ly. They are also assumed to be joined to the plate at their common
neutral axis. The effect of the first of these assumptions will be considered later.

The forces ~f 1ðxÞ and
~f 2ðxÞ per unit length act between the plate and beams 1 and 2 respectively, as shown in

Fig. 6, and an external point force ~F 0dðx� 0Þ acts on beam 1 at x ¼ 0. The motion of the beams is as given by
Eqs. (4) and (5).
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Fig. 3. Magnitude of response in wavenumber–frequency domain of two beams connected by resilient layer. Response normalised to

maximum at each frequency, dynamic range 25 dB. Left: on driven beam, right: on non-driven beam. (a,b) Identical beams, (c,d) less stiff

beam is driven and (e,f) stiffer beam is driven.
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It is now necessary to find the dynamic stiffness matrix of the plate at wavenumber kx. The Fourier
transformed equation of motion of the plate including damping is

~Dp k4
x
~W pðkx; yÞ � 2k2

x

q2 ~W pðkx; yÞ

qy2
þ

q4 ~W pðkx; yÞ

qy4

 !
�m00po

2 ~W pðkx; yÞ ¼ 0 (14)

where ~Dp is the complex plate bending stiffness and m00p is its mass per unit area. For a given real
value of kx, solutions for waves in the plate can be assumed of the form ~Bi e

~gyiy; where ~gyi is the propagation
coefficient in the plate in the direction normal to the beam (according to this definition imaginary values
of ~gyi represent propagating waves). To find ~gyi it is helpful to define ~kp as the damped free wavenumber in the

plate, given by ~kp ¼ o2m00p= ~Dp

� �1=4
. The propagation coefficients in the plate in the y direction are found from



ARTICLE IN PRESS

10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

E
2 

/ E
1

ω / ω0

Fig. 5. Ratio of total energy in the non-driven beam to that in the driven beam for two beams connected by a resilient layer: (—) identical

beams, (– � – � ) stiffer beam driven and (– – –) less stiff beam driven.

10−1 100 101
10−1

100

101

Y
 / 

Y
b1

 (ω
0)

10−1 100 101
−3

−2

−1

0

1

2

3

P
ha

se
 (r

ad
ia

ns
)

ω / ω0

Fig. 4. Point mobility of two infinite beams connected by a resilient layer. The mobility is normalised by that of the driven beam at

frequency o0: (—) identical beams, (– � – � ) stiffer beam driven and (– – –) less stiff beam driven.

D.J. Thompson et al. / Journal of Sound and Vibration 318 (2008) 206–226212
Eq. (14) to be

~gyi ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x �
~k
2

p

q
¼ �~gy1 and ~gyi ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ
~k
2

p

q
¼ �~gy2 (15)

If jkxjoj ~kpj, then the terms �~gy1 are predominantly imaginary and represent propagating waves and �~gy2

are predominantly real and are therefore nearfield waves. Conversely, if jkxj4j ~kpj, all four waves have large

real and imaginary parts and behave as nearfield waves. The motion of the plate can be written as

~W pðkx; yÞ ¼ ~B1 e
~gy1y þ ~B2 e

~gy2y þ ~B3 e
�~gy1y þ ~B4 e

�~gy2y (16)
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The displacement and rotation at the plate edges are equal to those of the corresponding beam, giving

~W b1

~W b2

~Yb1

~Yb2

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1 1 1 1

e~gy1Ly e~gy2Ly e�~gy1Ly e�~gy2Ly

~gy1 ~gy2 �~gy1 �~gy2

~gy1 e
~gy1Ly ~gy2 e

~gy2Ly �~gy1 e
�~gy1Ly �~gy2 e

�~gy2Ly

2
66664

3
77775

~B1

~B2

~B3

~B4

8>>>><
>>>>:

9>>>>=
>>>>;
¼ C1

~B1

~B2

~B3

~B4

8>>>><
>>>>:

9>>>>=
>>>>;

(17)

where ~Ybi is the amplitude of the rotation. Similarly the forces and moments at the plate edges are given by

~F 1

~F 2

~M1

~M2

8>>>><
>>>>:

9>>>>=
>>>>;
¼ ~Dp

p1 p2 �p1 �p2

�p1 e
~gy1Ly �p2 e

~gy2Ly p1 e
�~gy1Ly p2 e

�~gy2Ly

�q1 �q2 �q1 �q2

q1 e
~gy1Ly q2 e

~gy2Ly q1 e
�~gy1Ly q2 e

�~gy2Ly

2
66664

3
77775

~B1

~B2

~B3

~B4

8>>>><
>>>>:

9>>>>=
>>>>;
¼ C2

~B1

~B2

~B3

~B4

8>>>><
>>>>:

9>>>>=
>>>>;

(18)

where pi ¼ ~g3yi � ð2� nÞ~gyik
2
x, qi ¼ ~g2yi � nk2

x, n is Poisson’s ratio and ~Mi is the moment per unit length. This
allows a dynamic stiffness matrix for the plate to be determined for wavenumber kx

~F 1

~F 2

~M1

~M2

8>>>><
>>>>:

9>>>>=
>>>>;
¼ SðkxÞ

~W b1

~W b2

~Yb1

~Yb2

8>>>><
>>>>:

9>>>>=
>>>>;

(19)

where S is given by

SðkxÞ ¼ C2C
�1
1 (20)

Assuming sliding conditions for the edges of the plate, as the beams are assumed infinitely stiff to torsion,
the rotation on the edge, ~Ybi, is zero. Thus only the first two rows and columns of S are required. In a similar
way to Eq. (9) the response of the driven beam can be expressed as

~W b1ðkxÞ ¼
~F0

~Db1

k4
x �

~k
4

b2 þ s22= ~Db2

ðk4
x �

~k
4

b1 þ s11= ~Db1Þðk
4
x �

~k
4

b2 þ s22= ~Db2Þ � s12s21=ð ~Db1
~Db2Þ

(21)

where sij are elements of the frequency-dependent plate dynamic stiffness matrix, S. Similarly, the response of
the non-driven beam becomes

~W b2ðkxÞ ¼
~F0

~Db1

�s21= ~Db2

ðk4
x �

~k
4

b1 þ s11= ~Db1Þðk
4
x �

~k
4

b2 þ s22= ~Db2Þ � s12s21=ð ~Db1
~Db2Þ

(22)



ARTICLE IN PRESS
D.J. Thompson et al. / Journal of Sound and Vibration 318 (2008) 206–226214
The response of the plate can be found via the coefficients ~Bi using Eqs. (16) and (17). The response of the
plate and beams can subsequently be found in spatial coordinates by use of the inverse Fourier transform,
given in Eq. (2).

3.2. Determination of wavenumbers in the undamped system

It is of interest to identify wave solutions which propagate freely in the x-direction for an undamped system.
Such solutions can be found by setting the denominator of Eq. (21) to zero. Results are presented for two
beam–plate–beam configurations, the relevant parameters of which are listed in Table 1 in the form of
wavenumber ratios and mass ratios. These correspond to the experimental configurations considered in
Section 4 below. The beams have identical widths, so their heights are proportional to k�2bi . In one
configuration the two beams are identical; in the other they are dissimilar. The beams are stiffer than the plate,
having free wavenumbers ranging between 1/5 and 1/3 of the plate free wavenumber.

Fig. 7(a) shows the wavenumbers kx for which free wave propagation can occur for the dissimilar beam

case. The results are shown against non-dimensional frequency o/o1 where o1 ¼ ð ~Dp=m00pÞ
1=2
ðp=LyÞ

2 is the first

natural frequency of a plate strip of length Ly with sliding end conditions. This non-dimensional frequency
may also be written as (kpLy/p)

2. The wavenumber kx is shown normalised by p/Ly, the plate-free wavenumber
at o1. Also shown are the plate and beam free wavenumbers.

At low frequency a single wavenumber is present corresponding to the whole system vibrating as a beam. As
frequency increases, successive waves cut on which tend initially towards the free wavenumber of the stiffer
beam. Meanwhile, waves already present tend first towards the free wavenumber of the less stiff beam and
finally towards the plate-free wavenumber. As the wavenumbers approach the plate wavenumber, several
waves occur close together and it becomes more difficult to identify all poles of Eq. (21).

Fig. 7(b) shows equivalent results for the case with two identical beams. Similar behaviour is found, except
that as the two beam free wavenumbers are identical there are usually two waves close to the beam
wavenumber. One of these will be symmetric with respect the plate centreline, the other anti-symmetric.

3.3. Wave cut-on frequencies

Setting kx ¼ 0 in Eq. (21) allows identification of the cut-on frequency of each wave, the frequency above
which free wave propagation occurs. Noting that ~kbi ¼ o2m0bi=

~Dbi

� �1=4
, Eq. (21) reduces to

~W b1ð0Þ ¼ ~F 0
�o2m0b2 þ s22

ð�o2m0b1 þ s11Þð�o2m0b2 þ s22Þ � s12s21
(23)

This corresponds to the solution for a plate strip (effectively a beam) with end masses, in which the dynamic
stiffness matrix of Eq. (20) is now given purely in terms of the free plate wavenumber, i.e. ~gy1 ¼ i ~kp and
~gy2 ¼

~kp.
The corresponding natural frequencies, the poles of Eq. (23), are listed in Table 2 for three cases: the two

identical beams, the two dissimilar beams and a case with the most flexible of the three beams on one side and
a clamped boundary on the other. These are given in the form o/o1, where o1 is the natural frequency of the
plate strip with sliding boundaries. Due to the effect of the added mass of the beams, the first modes in each
Table 1

Beam–plate–beam configurations considered (all beams have the same width)

Identical beams Dissimilar beams

Smaller beam Larger beam

kb1/kp 0.260 0.313 0.204

kb1/kb2 1 0.650 1.537

mb1
0/mp

00Ly 0.333 0.229 0.542
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Fig. 7. Real wavenumbers kx for plate with two beams and damping set to zero: (– � – � ) free wavenumber in plate, (—) free wavenumber

in less stiff beam, (– – –) free wavenumber in stiffer beam, (�����) wavenumbers of coupled system: (a) dissimilar beams and (b) identical

beams.

Table 2

Natural frequencies of plate strip with end masses and sliding boundaries expressed as o/o1, where o1 is the natural frequency of a plate

strip of identical length with sliding ends

Identical beams Dissimilar beams Smaller beam plus clamped edge

0.653 0.639 0.416

2.957 2.940 2.611

7.098 7.086 6.676

13.18 13.18 12.72

21.17 21.17 20.74

31.28 31.28 30.76
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case are lower than o1. Higher order modes tend towards ðn� 1
2
Þ
2o1, which is indicative of clamped

boundaries. This occurs because the impedance of the added mass becomes much larger than that of the plate
strip and restrains the translation, the rotation already being constrained by the sliding boundary conditions.
These frequencies can be seen to correspond to the cut-on frequencies in Fig. 7.
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3.4. Waves for damped system

Although Eq. (21) is given in terms of real values of kx, for use in the inverse Fourier transform Eq. (2), the
equation is also valid for complex values of kx. As well as the real-valued poles identified in Section 3.2, purely
imaginary and other complex poles occur. In the presence of damping, none of the poles occur on the real axis
and it is instructive to seek the location of the poles on the complex plane.

Fig. 8 shows results for the case of two identical beams with a damping loss factor, Z, of 0.05 applied to both
beams and the plate. Points corresponding to the whole frequency range considered in Fig. 7 are shown. These
form loci on the complex plane. The results have rotational symmetry about the origin, as waves travelling in
positive and negative x directions differ only in the sign of their wavenumber. Waves in the first (and third)
quadrant are all strongly evanescent, occurring only above the diagonal Re(kx) ¼ Im(kx). In the second (and
fourth) quadrant, most waves commence close to the imaginary axis and then, at around their cut-on
frequency, they move across to the region close to the real axis. They always remain above the line
Im(kx) ¼ –Re(kx)Z/4.

The corresponding real and imaginary parts of the wavenumbers in the second quadrant are shown in Fig. 9
as a function of frequency. The real part shows similar behaviour to that in Fig. 7(b) except that the real part is
non-zero below the corresponding cut-on frequency. The imaginary part falls sharply around the cut-on
frequency to a value close to kb1Z/4 before rising (as the group velocity falls) and then dropping back to kpZ/4
as the real part tends towards kp. Similar results can be obtained for dissimilar beams [21]. As before, not all
wavenumber solutions could be found, especially when the real part tends towards the plate free wavenumber.

3.5. Wave contributions to mobility

Although many waves are present in the system, when excited by a point force the response in some waves is
greater than in others. In order to illustrate this, the response amplitude in the wavenumber domain,
j ~W b1ðkxÞj, is plotted against frequency and (real) wavenumber kx in Fig. 10(a) for the two identical beams.
Fig. 10(b) shows the response of the non-driven beam, j ~W b2ðkxÞj. Equivalent results are given in Fig. 10(c)
and (d) for dissimilar beams with excitation on the less stiff beam and in Fig. 10(e) and (f) for excitation on the
stiffer beam. Areas of dark shading correspond to large magnitude.

Comparing these results with those in Fig. 7 it can be seen that the region of maximum response on the
driven beam corresponds to the wave that is closest to the free wavenumber of that beam in each case. Similar
behaviour was seen for the spring-connected case in Fig. 3. On the non-driven beam, waves that are close to



ARTICLE IN PRESS

100 101 102

10−3

10−2

10−1

100

101

R
e 

{k
x}

 L
y /

 π

100 101 102

10−3

10−2

10−1

100

101

Im
 {k

x}
 L

y /
 π

ω / ω1

ω / ω1

(a)

Fig. 9. Wavenumbers kx from the second quadrant of Fig. 8 for two identical beams: (a) real part, (b) imaginary part. (– � – � ) Free

wavenumber in plate, (—) free wavenumber in beams, (– – –) Z/4 times corresponding free wavenumbers, and (�����) wavenumbers of

coupled system.

D.J. Thompson et al. / Journal of Sound and Vibration 318 (2008) 206–226 217
the free wavenumbers of both beams are strongly present, but the wave that is closest to the free wavenumber
in the stiffer beam dominates. In all cases the waves that tend towards the free plate wavenumber have
negligible contribution to the response of the beams.

Fig. 11 shows the response on the plate at an example position, y ¼ 0.354Ly. This again is dominated by the
wave closest to the free wavenumber of the driven beam in each case, indicating that the driven beam imposes
its behaviour on the more flexible plate. There is negligible contribution from the waves with wavenumbers
close to the free plate wavenumber.

3.6. Mobility

The drive point mobility of the three systems is shown in Fig. 12, again for a damping loss factor of 0.05. In
each case a set of resonance peaks is seen at similar frequencies, corresponding to the wave cut-on frequencies
given in Table 2. These frequencies are determined mainly by the properties of the plate and are only slightly
affected by the different beam configurations.
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Fig. 10. Magnitude of response in wavenumber–frequency domain of two beams connected by plate. Response normalised to maximum at

each frequency, dynamic range 30 dB. Left: on driven beam, right: on non-driven beam: (a,b) identical beams, (c,d) less stiff beam is driven,

and (e,f) stiffer beam is driven.
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As frequency increases, the mobilities converge towards that of an infinite beam (the driven beam). At lower
frequencies the trend is lower, and can be approximated by the mobility of the driven beam connected to a
semi-infinite plate [22,23], which are also shown in the figure. At very low frequencies, well below the first
resonance, the mobilities tend to that of an equivalent composite beam, corresponding to the single
wavenumber seen in Fig. 7.

Fig. 13 shows the ratio of summed squared vibration on each beam, based on Eq. (13). Similar trends are
seen to the spring-connected case (Fig. 5). However, the ratios remain close to unity over a wider frequency
range because the dynamic stiffness of the plate increases with frequency. The series of peaks seen, particularly
for the two dissimilar beam cases, correspond to the anti-resonances in the point mobility. They are thus
minima in the energy of the driven beam rather than maxima in the response of the non-driven beam. As for
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Fig. 11. Magnitude of response in wavenumber–frequency domain of plate with two edge beams, y ¼ 0.354Ly. Response normalised to

maximum at each frequency, dynamic range 30 dB: (a) identical beams, (b) less stiff beam is driven, and (c) stiffer beam is driven.

D.J. Thompson et al. / Journal of Sound and Vibration 318 (2008) 206–226 219
the spring-connected case, the transmission to the non-driven beam is generally largest when the beams are
identical; for the dissimilar beams it is about a factor of 10 lower when the less stiff beam is driven than when
the stiffer beam is driven.
3.7. Influence of beam torsion

Torsion of the beam can be included into the equations of motion. In this case the full 4� 4 dynamic
stiffness matrix S in Eq. (20) is retained. The rotations of each beam are included as two additional degrees of

freedom ~Ybi in Eq. (7). The matrix C in Eq. (7) becomes a 4� 4 diagonal matrix with the two additional terms

g33 ¼ ~GJb1k
2
x �m0b1r

2
1o

2; g44 ¼ ~GJb2k
2
x �m0b2r

2
2o

2 (24)

where ~GJbi is the torsional rigidity, made complex by including the damping term (1+iZ), and ri is the radius
of gyration of the beam.

Fig. 14 shows the mobility components at each wavenumber calculated for the identical beam case. These
results are similar to those with the rotation constrained, shown in Fig. 10(a) and (b), except that two waves
are present at very low frequency and the cut-on of each subsequent wave is shifted towards higher frequency.

The point mobility of the beam–plate–beam system in the presence of torsion is shown in Fig. 15. Compared
with the case in which rotation is constrained, from Fig. 12, the position of the peaks occurring at the cut-on of
each wave are shifted in frequency and at higher frequencies they are reduced in amplitude. However, the
general level of the mobility follows the same trend as previously.
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4. Experimental results

4.1. Experimental arrangement

Measurements have been performed on two different beam–plate–beam structures constructed from acrylic
plastic. This material was chosen because of its high damping and relatively low longitudinal wavespeed
(1950m/s). Each consisted of a plate of thickness 2mm and dimensions 0.5� 1.0m2 with beams attached
along the longer edges. Rectangular sections were attached both above and below the plate with a hard glue to
form beams of width 10mm and height 22, 32 or 52mm, as shown in Fig. 16. The plate width between
the beams was therefore 0.48m. One structure had identical 32mm high beams, the other had dissimilar 22
and 52mm beams. These configurations correspond to the parameters used above and listed in Table 1.

The structures were excited using a shaker attached at the end of one of the beams in the out-of-plane
direction. By exciting the structure with dissimilar beams on each beam in turn, a total of three configurations
was realised. The force was measured using a force transducer and the velocity of the plate and both beams
was measured by using a scanning laser vibrometer in the frequency range 10–1000Hz (o/o1 ¼ 1.2–120).
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A rectangular grid of measurement points was used on the plates with a spacing of approximately 25mm. This
corresponds to at least three points per plate wavelength at the maximum frequency of interest.

The damping loss factors were measured on plate strips and beams of the same material, the beams being
constructed using the same glue as here. These plate strips and beams each had only six resonances in the
range 50–1000Hz so that the damping could be determined simply by finding the half power bandwidth. The
loss factors were found to vary from about 0.07 at 50Hz to 0.04 at 1000Hz [23].

4.2. Spatial response

The response measured on the structure could be animated and was found to show propagating wavefronts
particularly at higher frequencies. Examples are shown in Fig. 17 for the case of dissimilar beams excited on
the stiffer beam at 500 and 1000Hz (o/o1 ¼ 60 and 120). This shows a comparison of measured and predicted
results in the form of the real part of the mobility, which is a snapshot of the response. The predictions are
obtained from the inverse Fourier transform of the solution in the wavenumber domain. The system was
excited at the bottom left-hand corner. In each case dashed lines have been added to indicate approximately
the wavefronts, which can be seen to propagate at a similar angle relative to the beam. This angle is such that
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the corresponding wavelength along the beam is considerably longer than that across the plate. Quite good
agreement is seen between measurements and predictions in terms of the direction of these wavefronts and the
wavelength (distance between wavefronts).

Although these spatial responses show the wave propagation visually, it is of more value to analyse the
measured results in terms of the wavenumber components.
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Fig. 17. Comparison of measured (left) and predicted (right) real part of transfer mobility for 52-2-22mm case: (a,b) at 500Hz, and

(c,d) at 1000Hz. Diagonal lines have been added to indicate wavefronts.
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4.3. Wavenumber estimation

The 2D correlation method described by Ferguson et al. [19,20] has been used to estimate the dominant
wavenumbers in the x and y directions from the measured responses. In Cartesian coordinates the 2D
correlation function at a single frequency and for discrete samples is given by

~Cðkx; kyÞ ¼
LxLy

NxNy

XNx

n¼1

XNy

m¼1

~wðxn; ymÞ e
�ikxxn e�ikyym , (25)
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where ~w is the complex response amplitude at positions (xn, ym). This function was determined for
wavenumbers (kx, ky) in the range �25 to +25 rad/m along the beam direction and �80 to +80 rad/m across
the plate, with a resolution of 0.2 rad/m. At each frequency the wavenumber pair (kx, ky) giving the maximum
value of j ~Cj was extracted.

The results for the case with identical beams are shown in Fig. 18. As can be seen, at most frequencies the
dominant component occurred with negative kx and ky, corresponding to a wave propagating in the positive x

and y directions away from the excitation point. Moreover, the dominant direction of propagation was always
the same, with ky approximately four times kx. For an infinite isotropic plate it would be expected that

wavenumbers would be equally likely to occur for all combinations of kx and ky such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
¼ kp, i.e.

points on a circle for a given frequency. Here, however, the driven beam imposes its wavenumber on the
system in the x-direction and kx/ky is approximately in the ratio kb/kp.

These values of kx and ky are plotted against frequency in Fig. 19(a). Above 100Hz the wavenumber
components kx and ky closely follow the free wavenumbers of the beam and plate, respectively. At low
frequency there is a larger variation, which is due partly to the limited length available for the correlation
method. Wavenumbers kx less than 6 rad/m or ky less than 12 rad/m are not expected to be reliable as the
corresponding wavelengths become greater than the dimensions of the structure. Moreover, the limited size of
the structure also means that modal behaviour is stronger at these lower frequencies, so the structure behaves
less like an infinite waveguide than at higher frequencies.

Equivalent results for the cases with dissimilar beams are shown in Fig. 19(b) and (c). In each case the
wavenumber component ky follows closely the free wavenumber of the plate while kx tends to follow the free
wavenumber of the driven beam, thus showing good agreement with the theoretical results.

The correlation method has also been applied to responses measured on the beams alone [21]. It was found
that the response of the driven beam in each case was dominated by the same wavenumbers kx as found on the
plate. The response of the non-driven beam was mostly found to follow the uncoupled wavenumber of the
stiffer beam at high frequencies, supporting the predictions in Fig. 11.

5. Conclusions

A beam–plate–beam system has been studied as a structural waveguide using analytical models and a
Fourier transform approach. It has been shown that multiple waves occur in the longitudinal direction, the
number of waves at a given frequency depending on the number of modes of the equivalent cross-section
occurring below that frequency. However, if the system is excited on one of the beams, the response on the
plate and the driven beam is dominated by the waves with a wavenumber component in the x-direction that is
close to that of the driven beam. The response of the non-driven beam is dominated by waves that are close to
the free wavenumber of the stiffer beam, whether this is driven or not.

The ratio of vibration energy in the non-driven beam to that in the driven beam is greatest when the beams
are identical. For non-identical beams, it is smaller when the more flexible beam is driven than when the stiffer
beam is driven. Similar behaviour is found for two beams coupled by a resilient layer.

Most results have been obtained with beam torsion suppressed but when it is included in the model the
results are generally similar, the main difference being a shift in the wave cut-on frequencies.

Experimental results have been obtained on beam–plate–beam systems with identical and non-identical
beams. A correlation technique has been used to extract the dominant wavenumbers in the x and y directions.
These results show good agreement with the predictions despite the finite length of the samples and confirm
that the plate response consists of waves with wavenumbers in the beam direction that closely follow those of
the excited beam.
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